Neural Network in R Training Course
This course is an introduction to applying neural networks in real world problems using R-project software.
Course Outline
Introduction to Neural Networks
- What are Neural Networks
- What is current status in applying neural networks
- Neural Networks vs regression models
- Supervised and Unsupervised learning
Overview of packages available
- nnet, neuralnet and others
- Differences between packages and itls limitations
- Visualizing neural networks
Applying Neural Networks
- Concept of neurons and neural networks
- A simplified model of the brain
- Opportunities neuron
- XOR problem and the nature of the distribution of values
- The polymorphic nature of the sigmoidal
- Other functions activated
- Construction of neural networks
- Concept of neurons connect
- Neural network as nodes
- Building a network
- Neurons
- Layers
- Scales
- Input and output data
- Range 0 to 1
- Normalization
- Learning Neural Networks
- Backward Propagation
- Steps propagation
- Network training algorithms
- range of application
- Estimation
- Problems with the possibility of approximation by
- Examples
- OCR and image pattern recognition
- Other applications
- Implementing a neural network modeling job predicting stock prices of listed
Requirements
Programming in any programming language recommended .
Open Training Courses require 5+ participants.
Neural Network in R Training Course - Booking
Neural Network in R Training Course - Enquiry
Neural Network in R - Consultancy Enquiry
Consultancy Enquiry
Testimonials (3)
I mostly enjoyed the graphs in R :))).
Faculty of Economics and Business Zagreb
Course - Neural Network in R
We gained some knowledge about NN in general, and what was the most interesting for me were the new types of NN that are popular nowadays.
Tea Poklepovic
Course - Neural Network in R
I liked the new insights in deep machine learning.
Josip Arneric
Course - Neural Network in R
Upcoming Courses
Related Courses
Programming with Big Data in R
21 HoursBig Data is a term that refers to solutions destined for storing and processing large data sets. Developed by Google initially, these Big Data solutions have evolved and inspired other similar projects, many of which are available as open-source. R is a popular programming language in the financial industry.
R Fundamentals
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
Data Analytics With R
21 HoursR is a very popular, open source environment for statistical computing, data analytics and graphics. This course introduces R programming language to students. It covers language fundamentals, libraries and advanced concepts. Advanced data analytics and graphing with real world data.
Audience
Developers / data analytics
Duration
3 days
Format
Lectures and Hands-on
Data Mining with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Data Mining & Machine Learning with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Forecasting with R
14 HoursThis instructor-led, live training in Venezuela (online or onsite) is aimed at intermediate-level data analysts and business professionals who wish to perform time series forecasting and automate data analysis workflows using R.
By the end of this training, participants will be able to:
- Understand the fundamentals of forecasting techniques in R.
- Apply exponential smoothing and ARIMA models for time series analysis.
- Utilize the ‘forecast’ package to generate accurate forecasting models.
- Automate forecasting workflows for business and research applications.
Marketing Analytics using R
21 HoursAudience
Business owners (marketing managers, product managers, customer base managers) and their teams; customer insights professionals.
Overview
The course follows the customer life cycle from acquiring new customers, managing the existing customers for profitability, retaining good customers, and finally understanding which customers are leaving us and why. We will be working with real (if anonymous) data from a variety of industries including telecommunications, insurance, media, and high tech.
Format
Instructor-led training over the course of five half-day sessions with in-class exercises as well as homework. It can be delivered as a classroom or distance (online) course.
R for Data Analysis and Research
7 HoursAudience
- managers
- developers
- scientists
- students
Format of the course
on-line instruction and discussion OR face-to-face workshops
Introduction to R
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
This course covers the manipulation of objects in R including reading data, accessing R packages, writing R functions, and making informative graphs. It includes analyzing data using common statistical models. The course teaches how to use the R software (https://www.r-project.org) both on a command line and in a graphical user interface (GUI).
Introductory R for Biologists
28 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
R
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
Advanced R Programming
7 HoursThis course is for data scientists and statisticians that already have basic R & C++ coding skills and R code and need advanced R coding skills.
The purpose is to give a practical advanced R programming course to participants interested in applying the methods at work.
Sector specific examples are used to make the training relevant to the audience
R Programming for Data Analysis
14 HoursThis course is part of the Data Scientist skill set (Domain: Data and Technology)
Introduction to Data Visualization with Tidyverse and R
7 HoursThe Tidyverse is a collection of versatile R packages for cleaning, processing, modeling, and visualizing data. Some of the packages included are: ggplot2, dplyr, tidyr, readr, purrr, and tibble.
In this instructor-led, live training, participants will learn how to manipulate and visualize data using the tools included in the Tidyverse.
By the end of this training, participants will be able to:
- Perform data analysis and create appealing visualizations
- Draw useful conclusions from various datasets of sample data
- Filter, sort and summarize data to answer exploratory questions
- Turn processed data into informative line plots, bar plots, histograms
- Import and filter data from diverse data sources, including Excel, CSV, and SPSS files
Audience
- Beginners to the R language
- Beginners to data analysis and data visualization
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Building Web Applications in R with Shiny
7 HoursDescription:
This is a course designed to teach R users how to create web apps without needing to learn cross-browser HTML, Javascript, and CSS.
Objective:
Covers the basics of how Shiny apps work.
Covers all commonly used input/output/rendering/paneling functions from the Shiny library.