Curso de AI Awareness para Telecom
La IA es un conjunto de tecnologías para construir sistemas inteligentes capaces de comprender los datos y las actividades que los rodean para tomar "decisiones inteligentes". Para los proveedores Telecom, la creación de aplicaciones y servicios que hagan uso de la IA podría abrir la puerta a la mejora de las operaciones y los servicios en áreas como el mantenimiento y la optimización de la red.
En este curso examinamos las diversas tecnologías que componen la IA y los conjuntos de habilidades necesarias para ponerlas en práctica. A lo largo del curso, examinamos las aplicaciones específicas de la IA dentro de la industria Telecom.
Audiencia
- Ingenieros de redes
- Personal de operaciones de red
- Telecom Directores técnicos
Formato del curso
- Parte conferencia, parte discusión, ejercicios prácticos
Programa del Curso
Introducción
Casos de uso y oportunidades para Telecom proveedores
¿En qué consiste la IA?
Computer Vision, Procesión del lenguaje natural (PNL), Reconocimiento de voz, etcétera.
Los datos como el petróleo de la IA
Cómo la probabilidad y Statistics impulsan la IA
Las Programming habilidades lingüísticas necesarias para la IA
Comprensión Machine Learning
Aplicación de Machine Learning bibliotecas para desarrollar sistemas inteligentes
Los motores de procesamiento de datos detrás Data Analysis
Uso de motores de reglas y sistemas expertos para tomar decisiones
Enfoques avanzados para Machine Learning: Deep Learning
Ejercicio: Predicción de fallos de red con Machine Learning
Cómo la IA impulsa el IoT y las aplicaciones para el IoT en Telecom
Manejo de mayores volúmenes de datos con tecnologías en la nube
Tecnologías y enfoques de automatización para Telecom
Reuniendo todo
Casos de uso y oportunidades para Telecom proveedores
La fruta madura para Telecom empresas
Planificación y comunicación de una estrategia de IA
Resumen y conclusión
Requerimientos
- Comprensión de la industria de las telecomunicaciones
- Comprensión de las redes
- Una comprensión general de los conceptos de programación
Los cursos de formación abiertos requieren más de 5 participantes.
Curso de AI Awareness para Telecom - Booking
Curso de AI Awareness para Telecom - Enquiry
AI Awareness para Telecom - Consulta de consultoría
Consulta de consultoría
Próximos cursos
Cursos Relacionados
Avanzado de LangGraph: Optimización, Depuración y Monitoreo de Grafos Complejos
35 HorasLangGraph es un marco para construir aplicaciones LLM multiactor con estado, como gráficos componibles con estado persistente y control de ejecución.
Esta formación en vivo dirigida por instructores (en línea o presencial) está destinada a ingenieros avanzados de plataformas AI, DevOps para AI y arquitectos ML que desean optimizar, depurar, monitorear y operar sistemas LangGraph de grado de producción.
Al finalizar esta formación, los participantes serán capaces de:
- Diseñar y optimizar topologías complejas de LangGraph para velocidad, costo y escalabilidad.
- Diseñar confiabilidad con reintentos, tiempos de espera, idempotencia y recuperación basada en puntos de control.
- Depurar y rastrear ejecuciones del gráfico, inspeccionar el estado y reproducir sistemáticamente problemas de producción.
- Instrumentar gráficos con registros, métricas y trazas, implementar en producción y monitorear SLAs y costos.
Formato del Curso
- Sesión interactiva de lectura y discusión.
- Numerosos ejercicios y prácticas.
- Implementación práctica en un entorno de laboratorio en vivo.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor póngase en contacto con nosotros para concertar la fecha.
Depuración y Evaluación Avanzada de Modelos Ollama
35 HorasAdvanced Ollama Model Debugging & Evaluation es un curso detallado centrado en el diagnóstico, la prueba y la medición del comportamiento de los modelos al ejecutar implementaciones locales o privadas de Ollama.
Esta formación en vivo dirigida por instructores (en línea o presencial) se dirige a ingenieros de IA avanzados, profesionales de ML Ops y practicantes de QA que desean garantizar la fiabilidad, la fidelidad y la preparación operativa de los modelos basados en Ollama en producción.
Al final de esta formación, los participantes serán capaces de:
- Ejecutar un depurado sistemático de modelos alojados en Ollama y reproducir modos de fallo de manera confiable.
- Diseñar y ejecutar pipelines de evaluación robusta con métricas cuantitativas y cualitativas.
- Implementar la observabilidad (logs, trazas, métricas) para monitorear la salud del modelo y el deriva.
- Automatizar pruebas, validaciones y controles de regresión integrados en los pipelines CI/CD.
Formato del Curso
- Conferencia interactiva y discusión.
- Laboratorios prácticos y ejercicios de depuración utilizando implementaciones de Ollama.
- Casos de estudio, sesiones grupales de solución de problemas y talleres de automatización.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para arreglarlo.
Creando Flujos de Trabajo de IA Privada con Ollama
14 HorasEsta formación en vivo y presidida por un instructor (en línea o en el sitio) está dirigida a profesionales avanzados que desean implementar flujos de trabajo impulsados por IA seguros y eficientes utilizando Ollama.
Al finalizar esta formación, los participantes podrán:
- Implementar y configurar Ollama para el procesamiento de IA privada.
- Integrar modelos de IA en flujos de trabajo empresariales seguros.
- Optimizar el rendimiento de la IA mientras se mantiene la privacidad de los datos.
- Automatizar procesos de negocio con capacidades de IA alojadas localmente.
- Asegurar el cumplimiento con las políticas de seguridad y gobernanza empresariales.
Implementación y Optimización de Modelos de Lenguaje Grande (LLMs) con Ollama
14 HorasEste entrenamiento dirigido por un instructor, en vivo en Venezuela (en línea o presencial), está dirigido a profesionales de nivel intermedio que deseen implementar, optimizar e integrar LLMs utilizando Ollama.
Al finalizar este entrenamiento, los participantes podrán:
- Configurar e implementar LLMs utilizando Ollama.
- Optimizar modelos de IA para mejorar el rendimiento y la eficiencia.
- Aprovechar la aceleración de GPU para mejorar la velocidad de inferencia.
- Integrar Ollama en flujos de trabajo y aplicaciones.
- Monitorear y mantener el rendimiento de los modelos de IA a lo largo del tiempo.
Fine-Tuning y Personalización de Modelos de IA en Ollama
14 HorasEste entrenamiento en vivo dirigido por un instructor (en línea o presencial) en Venezuela está destinado a profesionales de nivel avanzado que desean afinar y personalizar modelos AI en Ollama para mejorar el rendimiento y aplicaciones específicas del dominio.
Al finalizar este entrenamiento, los participantes podrán:
- Configurar un entorno eficiente para afinar modelos AI en Ollama.
- Preparar conjuntos de datos para el ajuste supervisado y el aprendizaje por refuerzo.
- Optimizar los modelos AI para rendimiento, precisión y eficiencia.
- Implementar modelos personalizados en entornos de producción.
- Evaluar mejoras del modelo y asegurar la robustez.
Aplicaciones de LangGraph en Finanzas
35 HorasLangGraph es un marco para construir aplicaciones LLM multiactor con estado como gráficos componibles con estado persistente y control sobre la ejecución.
Esta formación en vivo (en línea u on-site) dirigida por instructores está destinada a profesionales de nivel intermedio a avanzado que desean diseñar, implementar y operar soluciones financieras basadas en LangGraph con una adecuada gobernanza, observabilidad y cumplimiento.
Al finalizar esta formación, los participantes podrán:
- Diseñar flujos de trabajo específicos de finanzas de LangGraph alineados con requisitos regulatorios y de auditoría.
- Integrar estándares de datos financieros y ontologías en el estado del gráfico y las herramientas.
- Implementar confiabilidad, seguridad y controles human-in-the-loop para procesos críticos.
- Deploy, monitorizar y optimizar sistemas LangGraph para rendimiento, costo y SLAs.
Formato del Curso
- Conferencias interactivas y discusiones.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para organizarlo.
Fundamentos de LangGraph: Generación y Enlazado Basados en Grafos de LLM
14 HorasLangGraph es un marco para construir aplicaciones LLM estructuradas en grafos que admiten planificación, ramificación, uso de herramientas, memoria y ejecución controlada.
Esta formación en vivo dirigida por instructores (en línea o presencial) está destinada a desarrolladores principiantes, ingenieros de prompts y profesionales de datos que desean diseñar y construir flujos de trabajo LLM multi-etapas confiables utilizando LangGraph.
Al finalizar esta formación, los participantes podrán:
- Explicar conceptos básicos de LangGraph (nodos, bordes, estado) y cuándo utilizarlos.
- Construir cadenas de prompts que se ramifiquen, invoquen herramientas y mantengan la memoria.
- Integrar recuperaciones y APIs externas en los flujos de trabajo gráficos.
- Probar, depurar y evaluar aplicaciones LangGraph para confiabilidad y seguridad.
Formato del Curso
- Charla interactiva y discusión facilitada.
- Laboratorios guiados y revisión de código en un entorno de sandbox.
- Ejercicios basados en escenarios sobre diseño, prueba y evaluación.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para acordarlo.
LangGraph en la Salud: Orquestación de Flujos de Trabajo para Entornos Regulados
35 HorasLangGraph habilita flujos de trabajo multiactor y con estado, impulsados por LLMs, con un control preciso sobre las rutas de ejecución y la persistencia del estado. En el ámbito de la salud, estas capacidades son cruciales para cumplir con los requisitos normativos, garantizar la interoperabilidad y desarrollar sistemas de apoyo a la toma de decisiones que se alineen con los flujos de trabajo médicos.
Esta formación en vivo dirigida por un instructor (en línea o presencial) está destinada a profesionales de nivel intermedio a avanzado que deseen diseñar, implementar y gestionar soluciones basadas en LangGraph para la salud, abordando desafíos regulatorios, éticos y operativos.
Al finalizar esta formación, los participantes podrán:
- Diseñar flujos de trabajo específicos del sector sanitario con LangGraph, teniendo en cuenta la conformidad y la auditoría.
- Integrar aplicaciones LangGraph con ontologías médicas y estándares (FHIR, SNOMED CT, ICD).
- Aplicar las mejores prácticas para confiabilidad, trazabilidad y explicabilidad en entornos sensibles.
- Distribuir, supervisar y validar aplicaciones LangGraph en entornos de producción sanitaria.
Formato del Curso
- Conferencias interactivas y discusiones.
- Ejercicios prácticos con estudios de casos reales.
- Ejercitación en un entorno de laboratorio en vivo.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor póngase en contacto con nosotros para coordinar.
LangGraph para Aplicaciones Legales
35 HorasLangGraph es un marco para construir aplicaciones LLM multiactor con estado, como gráficos componibles con un estado persistente y un control preciso sobre la ejecución.
Este entrenamiento en vivo dirigido por un instructor (en línea o presencial) está destinado a profesionales de nivel intermedio a avanzado que desean diseñar, implementar y operar soluciones legales basadas en LangGraph con los controles necesarios de cumplimiento, trazabilidad y gobernanza.
Al finalizar este entrenamiento, los participantes podrán:
- Diseñar flujos de trabajo específicos para la legalidad en LangGraph que preserven la auditoría y el cumplimiento.
- Integrar ontologías legales y estándares de documentos en el estado del gráfico y su procesamiento.
- Implementar barreras de seguridad, aprobaciones con intervención humana y caminos de decisiones trazables.
- Desplegar, monitorear y mantener servicios LangGraph en producción con observabilidad y controles de costos.
Formato del Curso
- Sesiones interactivas de lectura y discusión.
- Numerosos ejercicios y prácticas.
- Implementación práctica en un entorno de laboratorio en vivo.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para coordinar.
Creación de Flujos de Trabajo Dinámicos con LangGraph y Agentes LLM
14 HorasLangGraph es un marco para componer flujos de trabajo estructurados en gráficos que admiten ramificación, uso de herramientas, memoria y ejecución controlada.
Este entrenamiento en vivo guiado por instructores (en línea o presencial) está destinado a ingenieros de nivel intermedio y equipos de productos que desean combinar la lógica gráfica de LangGraph con los bucles de agentes LLM para construir aplicaciones dinámicas y conscientes del contexto, como agentes de soporte al cliente, árboles de decisiones y sistemas de recuperación de información.
Al finalizar este entrenamiento, los participantes podrán:
- Diseñar flujos de trabajo basados en gráficos que coordinen agentes LLM, herramientas y memoria.
- Implementar enrutamiento condicional, reintentos y respaldos para una ejecución robusta.
- Integrar la recuperación, APIs y salidas estructuradas en los bucles de agentes.
- Evaluar, monitorear y fortalecer el comportamiento del agente para mejorar la confiabilidad y seguridad.
Formato del Curso
- Conferencia interactiva y discusión facilitada.
- Laboratorios guiados y repaso de código en un entorno sandbox.
- Ejercicios de diseño basados en escenarios y revisiones entre pares.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para organizarlo.
LangGraph para Automatización de Marketing
14 HorasLangGraph es un marco de orquestación basado en grafos que permite flujos de trabajo condicionales y multi-pasos para LLM y herramientas, ideal para automatizar y personalizar canales de contenido.
Esta formación en vivo dirigida por instructores (en línea o presencial) se dirige a marketers de nivel intermedio, estrategas de contenidos y desarrolladores de automatización que deseen implementar campañas de correo electrónico dinámicas y ramificadas y canales de generación de contenido utilizando LangGraph.
Al finalizar esta formación, los participantes podrán:
- Diseñar flujos de trabajo de contenido y correo electrónico estructurados en grafos con lógica condicional.
- Integrar LLMs, APIs y fuentes de datos para personalización automatizada.
- Gestionar estado, memoria y contexto a lo largo de campañas multi-paso.
- Evaluar, monitorear y optimizar el rendimiento del flujo de trabajo y los resultados de entrega.
Formato del Curso
- Conferencias interactivas y discusiones grupales.
- Laboratorios prácticos implementando flujos de trabajo de correo electrónico y canales de contenido.
- Ejercicios basados en escenarios sobre personalización, segmentación y lógica ramificada.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para organizarlo.
Multimodal Applications with Ollama
21 HorasOllama is a platform that enables running and fine-tuning large language and multimodal models locally.
This instructor-led, live training (online or onsite) is aimed at advanced-level ML engineers, AI researchers, and product developers who wish to build and deploy multimodal applications with Ollama.
By the end of this training, participants will be able to:
- Set up and run multimodal models with Ollama.
- Integrate text, image, and audio inputs for real-world applications.
- Build document understanding and visual QA systems.
- Develop multimodal agents capable of reasoning across modalities.
Format of the Course
- Interactive lecture and discussion.
- Hands-on practice with real multimodal datasets.
- Live-lab implementation of multimodal pipelines using Ollama.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introducción a Ollama: Ejecución de Modelos de IA Locales
7 HorasEsta formación en vivo, dirigida por un instructor (en línea u on-site), está orientada a profesionales principiantes que desean instalar, configurar y usar Ollama para ejecutar modelos de IA en sus máquinas locales.
Al finalizar esta formación, los participantes podrán:
- Comprender los fundamentos y capacidades de Ollama.
- Configurar Ollama para ejecutar modelos locales de IA.
- Implementar e interactuar con LLMs utilizando Ollama.
- Optimizar el rendimiento y el uso de recursos para cargas de trabajo de IA.
- Explorar casos de uso para la implementación local de IA en diversos sectores.
Ollama Scaling & Infrastructure Optimization
21 HorasOllama is a platform for running large language and multimodal models locally and at scale.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level engineers who wish to scale Ollama deployments for multi-user, high-throughput, and cost-efficient environments.
By the end of this training, participants will be able to:
- Configure Ollama for multi-user and distributed workloads.
- Optimize GPU and CPU resource allocation.
- Implement autoscaling, batching, and latency reduction strategies.
- Monitor and optimize infrastructure for performance and cost efficiency.
Format of the Course
- Interactive lecture and discussion.
- Hands-on deployment and scaling labs.
- Practical optimization exercises in live environments.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Prompt Engineering Mastery with Ollama
14 HorasOllama is a platform that enables running large language and multimodal models locally.
This instructor-led, live training (online or onsite) is aimed at intermediate-level practitioners who wish to master prompt engineering techniques to optimize Ollama outputs.
By the end of this training, participants will be able to:
- Design effective prompts for diverse use cases.
- Apply techniques such as priming and chain-of-thought structuring.
- Implement prompt templates and context management strategies.
- Build multi-stage prompting pipelines for complex workflows.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises with prompt design.
- Practical implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.