Programa del Curso
Understanding AI and Machine Learning
- What is AI and how is it defined?
- Machine Learning as a subset of AI
- Types of AI: weak, strong, generative, supervised, unsupervised
AI in Practice Across the Organization
- Where AI/ML currently exists in business functions
- Automation, decision support, customer service, and analytics
- Use cases in HR, finance, operations, and compliance
Common Governance Challenges
- Conflicts with the Data Protection Principles
- Lawfulness, fairness, and transparency in automated decision-making
- Accuracy, data minimization, and storage limitations
Foundations in Information and Data Management
- Information and records management in AI contexts
- The importance of metadata and audit trails
- Maintaining data quality and integrity for training datasets
Approaching Information Governance Challenges
- Designing governance controls for AI/ML pipelines
- Human oversight and explainability
- Building cross-functional governance teams
Conducting DPIAs for AI/ML
- Legal requirement and purpose of DPIAs
- Steps to assess proposed AI/ML implementations
- Documenting risk assessments, mitigations, and justifications
Governance Frameworks and Risk Management
- Overview of AI-specific governance frameworks
- ISO, NIST, ICO, and OECD approaches
- Risk registers and policy documentation
Culture, Integration, and Related Frameworks
- Embedding a culture of responsible AI use
- Linking AI governance with cybersecurity, ethics, and ESG policies
- Continuous improvement and monitoring
Summary and Next Steps
Requerimientos
- An understanding of organizational information governance policies
- Familiarity with data protection or privacy regulations
- Some exposure to AI or machine learning concepts is helpful
Audience
- Information governance professionals
- Data protection officers and compliance managers
- Digital transformation or IT governance leads
Testimonios (2)
el ecosistema de ML no solo incluye MLFlow sino también Optuna, hyperops, docker y docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Curso - MLflow
Traducción Automática
Disfruté participar en el entrenamiento Kubeflow, que se llevó a cabo de forma remota. Este entrenamiento me permitió consolidar mis conocimientos sobre los servicios de AWS, K8s y todas las herramientas DevOps relacionadas con Kubeflow, que son las bases necesarias para abordar adecuadamente el tema. Quiero agradecer a Malawski Marcin por su paciencia y profesionalismo en la formación y en la orientación sobre las mejores prácticas. Malawski aborda el tema desde diferentes ángulos, utilizando distintas herramientas de implementación Ansible, EKS kubectl, Terraform. Ahora estoy definitivamente convencido de que me dirijo al campo de aplicación correcto.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Curso - Kubeflow
Traducción Automática